
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Defeating SQL Injection through Efficient Scanner Tool

Princella Amirtha D1, Dr.E.R.Naganathan1

1PG student, M Tech CSE, Hindustan University, Chennai

2HOD, CSE Department, Hindustan University, Chennai

Abstract

The main aim of this project is to develop an efficient

scanner tool for web security against defensive

coding practices with vulnerability detection and

runtime attack prevention method. SQL injection is

one of the most common application layer attack

techniques used today. The SQL injection attack

takes the advantages of improper coding of your web

application that allows hacker to inject SQL character

or keywords or commands into say a login form to

allow them to gain access the data held within your

database. So the hacker gets the original data from

database and corrupts it. So the scanner tool is used

to check the code and aids in code recovery and

guarantees a secure website.

Keywords: Efficient Scanner Tool, Website

Security, Defeating SQL Injection, Recovery Tool

for SQL Injection.

1. Introduction

Structured query language injection is one form of

attack through queries. SQL injection attack is a one

of the most popular web application hacking method,

in which the attacker or hacker steals the data from

the organization. In other words through SQL

injection attack an unauthorized person can access

the database of the website. So the attacker can easily

extract the data from the database. SQL injection is a

standard for database manipulation. The main use of

SQL is used to communicate with database. Through

queries injection we can easily modify the data in the

database which can lead to the leak of confidential

information such as credit card numbers, passwords,

commercial information and table structure.

The Web programming language such as Java,

ASP.NET and PHP provide various steps for

Constructing and executing SQL statements but due

to lack of training the developers misuse these

methods causing SQL vulnerabilities. The developers

commonly rely on dynamic query building with

string concatenation to construct SQL statements.

During the execution the system forms queries with

inputs directly received from external sources. This

method makes it possible to build different queries

based on varying conditions set by users. This may

cause many SQLIVs and using parameterized queries

or stored procedures is a more secure method but

inappropriate use can still result in vulnerable code.

2. Related Work

Learning from the previous works as described in [3]

Boyd, keromytis-2004 checks the SQL injection

attack developed by SQL rand, which uses a proxy to

append key to SQL keyword. It uses set

randomization of SQL statement to find whether it is

affected by SQL injection attack by using de-

randomizing proxy. It converts the randomized query

to proper SQL queries for the database. The attacker

does not know the key so the code harmed by the

attacker is treated as expressions and undefined

keywords. This causes runtime exception and the

database does not receive any query. The main

disadvantage of this system is security of the key and

its complex configuration. If the key is not secure the

attacker can easily formulate the queries and enter

into the database.

 Ke Weietal-2006[4] proposed a novel

method to defend against the attacks targeted at

stored procedures. The static application code

analysis with runtime validation is combined in this

method to eliminate the happenings of such attacks.

For any SQL statement the stored procedure parser

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

are designed in the static part which is based on the

user inputs. The parser is used to compare the

original SQL statement structure including the user

inputs. The result of the method is proposed in [1]

based on several stored procedures in SQL Server

2005 database. The owner of the website will not see

the security vulnerabilities in their websites written in

ASP.NET; therefore the suggested algorithm

performs a scanning process for all

websites/application files.

The scanner tool proposed here checks the

source code of the application on the Asp.net files.

The scanner tool describes most leaks and

vulnerabilities types. It provides suggestion but not

the recovery of code where the malicious SQL

statements are inserted into an entry field execution.

Example: to dump the data base content to the

attacker. The suggested scanner tool will help

organizations to fix the vulnerabilities and improve

the overall security.

3. Proposed System

The proposal here about developing the efficient

scanner tool for website security, not only identifies

the malicious statement and making recovery of that

code through scanner tool which converts insecure

code into secure code. It analyses and monitors a

solution against SQL injection where attackers use all

types of SQLIA defenses. There is a no way can an

attacker can modify SQL statements. No false

positives and it is used a set of real web application.

4. System Architecture

The system architecture is classified into four parts:

defensive coding, SQLIV detection, prepared

statement replacement algorithm, model based testing

and SQLIA runtime prevention.

4.1. Defensive coding:

 It is a straight forward solution, the

developers easily consequence the SQLIVs for

insecure coding practices.

Incorrect filtered escape characters:

 This form of SQL injection occurs when

user input is not filtered for escape character and is

then passed into a SQL statement. This result in the

potential manipulation of the statement performed on

the database by the end-user of the application.

The following line of code illustrates this

vulnerability:

Statement=”SELECT*FROM users WHERE

name=”’+username+”’;”

This query is designed to pull up the records of the

specified username from its table of users. If the

“username” variable is crafted by a malicious use, the

SQL statement may do more than the code author

intended. For example, setting the “username”

variable as:

‘or’1’=1’

In other case by using comments to even block the

rest of the query. There are three types of SQL

comments, they are a follows

‘or’1’=’1’--‘

‘or’1’=’1’({‘

‘or’1’=’1’/*’

Here the SQL code is used in an authentication

procedure then this example is used to select a valid

username because the evaluation of ‘1’=’1’ is always

true.

Incorrect type handling:

 This form of SQL injection occurs when a

user field is not strongly typed or is not checked for

type constraints. this could take place a numeric field

is to be used in a SQL statement but the programmer

makes no check prove that the user supplied input is

numeric. For example:

Statement:= “SELECT * FROM userinfo WHERE

id=”+a_variable+”;”

It is clear form this statement that the user trying

a_variable to be a number connection to the “id”

field. However, if it is in fact a string then the end-

user may disapprove the statement as they choose,

there by bypassing the need for escape characters.

White list filtering:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

The bad special characters such as ‘ and ;

are used by the developers to reject by using the bad

list filtering from the parameters to avoid SQL

injection. However, accepting only inputs know to be

acceptable is safer. Developers could keep a list of

data patterns and accept only matching input data.

Fig: 1. Efficient Scanner Tool Architecture

4.2. SQLIV Detection:

 You can configure code analysis to run for

each build of a managed code project. You can set

different code analysis properties for each visual

studio configuration. The reported risk level is set

automatically by the tool with no manual verification

by the test vendor. This can be supplemented with

training based scanning that looks to remove some

common false positives by using supplied training to

authenticate with a service.

4.3. Prepared statement replacement algorithm:

 The PSR-algorithm is used to remove the

SQLIVs that contains in the existing source code.

The PSR-algorithm analyzes the source code

containing SQLIVs and it generates a specific useful

code structure containing prepared statements. The

PSR algorithm separates the SQL statement’s input

from the SQL structure. For each string object, it

creates the SQL statement by the additional string

object of the PSR algorithm. The new string object

contains the raw string data of the original string

object and any identifiers found in the original string

object the PSR algorithm identifies as SQL structure.

An assistant vector for each new string object is

created by the PSR algorithm. The PSR algorithm

generates string objects can contain other PSR

algorithm generated string object based on how the

original string are used. Therefore, assistant vector

can contain other assistant vector, creating a tree. The

tree contains proper variables for each decision path

of the conditional.

4.4. Model based testing:

 Model-based testing approaches the system

is modeled by a set of logical expression specifying

the system’s behavior.

Constraint logic programming and symbolic

execution:

 Constraint programming can be used to

select test cases satisfying specific constraints by

solving a set of constraints over a set of variables.

The system is described by the means of constraints.

Solving the set of constraints can be done by Boolean

solvers. A solution found by solving the set of

constraints formulas can be can serve as a test cases

for the corresponding system. Constraints

programming can be combined with symbolic

execution. In this approach a system model is

Development

Defensive

Coding

Practice

Code

Verification

Code

Scanning

Deployment

Runtime attack

Prevention

Detect Code

 Code

 Code

Testing & Debugging

Prepared statement

replacement

Model based testing

 Build

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

executed symbolically, that is collecting data

constraints over different control path, and then using

the constraint programming method for solving the

constraints and producing test cases .Model checkers

can also be used for test case generation. Originally

model checking was developed as a technique to

check if property of a specification is valid in a

model.

4.5. SQLIA runtime prevention:

 Input validating techniques can prevent

some vulnerability. The static query statement is not

good when we use of dynamic query, and finally the

IDS Intrusion detection system on protection in

firewalls, proxy and gateway.

5. Conclusion

SQL injection attack is web based application attack

used by the hacker to access the secret data,

modifying the contents of website, by passing the

logins and shutting down the My SQL server. For

solving the problem this proposes an efficient scanner

tool which used to scan the source code affected by

the SQLIA and make the code secure through which

the attacker does not enter into the website.

References

[1] J.C. Lin, J.M. Chen, and C.H Liu: An Automatic

Mechanism for Sanitizing Malicious Injection. The

9th International Conference for Young Computer

scientists, IEEE Computer Society 2008.

[2] E. Bertino, A.Kamra, nd James P. Early: Profiling

Database Application to Detect SQL Injecction

Attacks, IEEE Conference 2007.

[3]S.W. Boyd and A.D. keromytis: SQL Rand:

Preventing SQL Injection Attacks. In Proceedings of

the 2nd Applied Cryptography and Network

Security(ACNS) Conference, Spring-Verlag. 2004.

[4]Ke Wei, m. Muthuprasanna, Suraj Kothair:

preventing SQL Injection Attacks in Stored

Procedure, Australian Software Engineering

Conference(ASWEC’06), IEEE Computer Society

2006.

[5]Lwin Khim Shar and Hee Beng Kuan Tan,

Nanyuang Technogical Unversity of Singapore:

Defeating SQL injection, IEEE Computer Society

2013.

